
VŠB — Technická univerzita Ostrava

Fakulta elektrotechniky a informatiky

Katedra informatiky

Generováńı hudebńıch skladeb poč́ıtačem

Generating Music Compositions by

a Computer

2011 Ondřej Garncarz

Declaration

I declare this thesis was written solely by myself. All used sources and publications are listed.

Date: May 6, 2011 Ondřej Garncarz

1

Abstract and keywords

Abstract

The thesis is focused on a problem of generating music by a computer, music being random

but not very different from one created by a human, following particular harmony rules and not

overgoing into disharmony. Basic terms from music theory are introduced, then the developed

algorithm is described, both generally and in a relation to the Haskell implementation. The

program is compared to similar software and a possible future development is suggested.

Abstrakt

Práce se zabývá problémem generováńı hudby poč́ıtačem, která je náhodná, ale zároveň ne

př́ılǐs odlǐsná od hudby složené člověkem, dodržuj́ıćı určitá pravidla harmonie a nevykračuj́ıćı

do disharmonie. Jsou objasněny některé základńı pojmy hudebńı teorie a následně je popsán

vyvinutý algoritmus, jednak obecně a poté i v souvislosti k implementaci v jazyku Haskell.

Program je srovnán s jemu podobnými, již existuj́ıćımi, a je navržen jeho daľśı možný vývoj.

Keywords

music, composition, music generated by a computer, randomness, harmony, MIDI

Kĺıčová slova

hudba, skladba, hudba generovaná poč́ıtačem, náhoda, harmonie, MIDI

2

Contents

1 Preamble 7

2 Introduction to music theory 8

2.1 Song . 8

2.2 Tone . 8

2.3 Melody . 9

2.4 Chord . 9

2.4.1 Triad . 10

2.5 Harmony . 10

2.5.1 Voices . 10

2.5.2 Counterpoint . 11

2.6 Scale . 11

2.6.1 Consonance and dissonance . 12

2.7 Diatonic function . 12

2.7.1 Tonic chord . 12

2.7.2 Dominant chord . 12

2.7.3 Subdominant chord . 13

2.8 Rhythm . 13

3 One of possible processes of the creation of music 14

3.1 Harmony rules . 15

3.2 Rhythm rules (of harmony) . 19

3.3 Interpretation . 20

4 Implementation 22

4.1 Input . 22

4.2 Output . 22

4.3 Environment . 24

4.4 Main program and helpers . 25

4.4.1 Types . 25

4.4.2 Random generator . 28

4.5 Harmony flow . 31

3

4.5.1 Relations . 31

4.5.2 Chances for harmony . 34

4.5.3 Chances for rhythm . 37

4.6 Interpretation . 38

4.6.1 Techniques used in interpretation . 38

4.7 MIDI . 41

4.7.1 MIDI messages . 41

4.7.2 Implemented functions and monad in relation to MIDI output 41

5 Comparison with similar software 44

5.1 WolframTones . 44

5.2 FractMus . 44

5.3 C.P.U. Bach . 45

5.4 Virtual music composer . 45

6 Conclusion 46

Bibliography 47

A Exemplary use of the program 48

4

List of Figures

2.1 Example of tones of different pitches, in ascending order 9

2.2 Example of tones of different durations . 9

2.3 Example of tones of different dynamics . 9

2.4 Example of a melody . 9

2.5 Example of a chord followed by a chord of the same nature but with one tone

suppressed . 10

2.6 Examples of triads: major, minor, diminished and augmented built on C 10

2.7 Example of a progression of harmony . 10

2.8 Example of voices . 11

2.9 Example of counterpoint . 11

2.10 Example of two scales . 11

2.11 Scales based on C but differing in intervals . 12

2.12 Scale C: consonant chord C evolves to dissonant G7 and then back to C 12

2.13 Tonic chord . 12

2.14 Dominant chord, resolved in a tonic one . 13

2.15 Subdominant chord, followed by a dominant one resolved in a tonic one 13

2.16 Rhythm: three measures, inside each two beats 13

3.1 Treating of a leading tone rule . 15

3.2 Beginning with a tonic triad rule . 16

3.3 Subdominant not succeeding a dominant rule . 16

3.4 Scale chord rule . 16

3.5 Thick chord rule . 17

3.6 Antijumping rule . 17

3.7 Triad rule . 17

3.8 Antisilence rule . 17

3.9 Tones count rule . 18

3.10 Counterpoint rule . 18

3.11 Moving rule . 18

3.12 Consonant rule . 18

3.13 Antirepeating rule . 19

3.14 Antirepeating soprano rule . 19

5

3.15 Antioverlapping rule . 19

3.16 Beat-copying rule . 20

3.17 Interpretation of bass . 20

3.18 Interpretation of melody . 20

3.19 Interpretation of rhythm part . 21

4.1 Example of saved harmony flow . 23

4.2 Example of generated song in sheet music . 24

4.3 Functions references for the file Main.hs. 26

4.4 Module imports. 27

4.5 Chord type help illustration . 27

4.6 Functions references for the file MGRandom.hs. 30

4.7 Functions references for the file Flow.hs. 32

4.8 Functions references for the file Relations.hs. 35

4.9 Functions references for the file ChanceHarmony.hs. 36

4.10 Functions references for the file ChanceHarmonyRhythm.hs. 37

4.11 Functions references for the file Interpretation.hs. 39

4.12 Functions references for the file InterpretationTechniques.hs. 40

4.13 Functions references for the file Midi.hs. 43

6

Chapter 1

Preamble

The creation of music is a wonderful process known to humankind for a very long time, interesting

not only because of output. During history, people have become able to write music down and

analyze it. Sheet music turns out to be made just of few primitives satisfying rules of music

which are easy to be interpreted mathematically. Also, it can be transferred back to music by

letting musicians interpret it or, in the last few decades, by letting even computers do it which

is very easy to achieve.

The goal of this thesis is to algorithmically analyze one of possible processes of the creation of

music and to show it implemented. Thus, we start with Chapter 2 introducing basic definitions

from music theory, using them in Chapter 3 to establish an algorithm, whose implementation is

described in Chapter 4 and subsequently compared with similar programs in Chapter 5.

Have a good read.

7

Chapter 2

Introduction to music theory

This chapter is willing to introduce some basic terms which will be useful later in the process

of creation. Understanding of relations is connected with insight into algorithms and names are

the ones this thesis will reuse. Presented terms and relations are — in a very more complex way

— taught by the book [1] which is also a great inspiration and source for this thesis.

2.1 Song

Although a little simplifying, let’s call a musical work a song.

2.2 Tone

Tones are musical sounds of which the song is composed. They can be produced in many

ways — singed, played on a instrument or created synthetically. They don’t even have to be

produced, they can exist in an abstract form as sheet music notes. They can have diverse

qualities depending on their essence:

Pitch is a frequency of the sound.1

Duration is a time of how long the sound is lasting.

Dynamics is a strength of the expression, simplified a loudness.

Color (timbre) is an expression itself. Because the tone isn’t just a sound wave of the funda-

mental frequency but a mixture of sound waves rooted from the loudest — fundamental

— one, the expression varies on ratios of their strengths. This is what makes different

instruments sound differently.

It’s important to remark that the qualities can be approached as relative or absolute — for

the musical use the relative approach is much more important — we want to know how tones

are related to each other, we don’t pay too much attention to a physical point of view.

1Precisely said: the fundamental frequency.

8

�� �� � ��� �
Figure 2.1: Example of tones of different pitches, in ascending order

� ���
Figure 2.2: Example of tones of different durations

mp

�
f

���

Figure 2.3: Example of tones of different dynamics

In this thesis, the essential qualities are pitch and duration.

The distance between two tones — their pitches — is called an interval. The distance of 12

semitones2 is an important one — an octave — defining a pitch twice as high (or low). For the

simplicity in a lot of practices, distances bigger than the octave can be recalculated as the value

modulo 12 and those under zero — an unison — can be added by 12 resulting in all intervals

being from the unison to the octave.

2.3 Melody

A melody is a sequence of tones.

�� � � � � �
Figure 2.4: Example of a melody

2.4 Chord

A chord is a set of tones sounding at a moment. The fundamental tone — not necessarily the

lowest one — on which the chord is built is called a root. Sometimes a subset of a chord can be

viewed as of the same nature as the chord.

2A semitone is the smallest distance from the classical point of view.

9

� � ��� ����
Figure 2.5: Example of a chord

followed by a chord of the same nature but with one tone suppressed

2.4.1 Triad

A triad is a commonly used chord, consisting of three tones between which these intervals can

occur:

Major consisting of distances of 4 and 7 semitones to the root.

Minor consisting of distances of 3 and 7 semitones to the root.

Diminished consisting of distances of 3 and 6 semitones to the root.

Augmented consisting of distances of 4 and 8 semitones to the root.

� �� ������ �� �� ���� �
Figure 2.6: Examples of triads: major, minor, diminished and augmented built on C

2.5 Harmony

Harmony is a relation between notes in a chord. The chord can be viewed as an union of a root

tone and other tones which have some distance from the root tone. Moreover, a progression of

harmony sets “a feeling” of a song whereas a melody can be viewed as “a particular message”.

��� � ��� ��� ����
Figure 2.7: Example of a progression of harmony

2.5.1 Voices

A voice can be viewed as a vertical part of a staff. Four-part harmony has these four voices:

Bass is the lowest part.

Tenor is the second lowest part.

10

Alto is the second highest part.

Soprano is the highest part, holding a melody.

This thesis focuses mainly on bass and soprano.

��� � ��� ��� ����
(a) Full harmony

� �� � ��
(b) Bass voice

� � � �� �
(c) Soprano voice

Figure 2.8: Example of voices

2.5.2 Counterpoint

Counterpoint is a harmony progress where the bass voice and the soprano one evolve contrary.

���� � ��� ��
Figure 2.9: Example of counterpoint

2.6 Scale

Songs (or their parts) are usually based on a set of tones called a scale.

�� ��� �� ���
(a) C major

�� ���� � � ��� �� �
(b) E major

Figure 2.10: Example of two scales

The scale is based on its key tone — that’s the one the scale is named after — and intervals

of included tones in relation to the key tone — that’s what the second part of the scale’s name

stands for. Scales this thesis aims at and which are also the most frequently used in Western

music are called the major scale and the minor scale3.

3There are more minor scales, this thesis aims at the natural one.

11

�� ��� �� ���
(a) C major

�� �� �� � �� � ��
(b) C minor

Figure 2.11: Scales based on C but differing in intervals

2.6.1 Consonance and dissonance

A consonant chord is a chord coming from a scale and being of proper intervals, thus sounding

pleasantly, while a dissonant one isn’t and is tending to evolve into a consonant one to sustain

the scale. This brings richer harmony and more possibilities for melodizing.

���� �� �� ����
Figure 2.12: Scale C: consonant chord C evolves to dissonant G7 and then back to C

2.7 Diatonic function

A diatonic function (or a harmonic function) defines a relation between a chord and a scale.

Let’s consider a C major scale as a referential scale in examples. The main functions presented

here come from [1, p. 48].

2.7.1 Tonic chord

The tonic chord commonly begins and ends a song and defines its scale. It’s a chord perceived

as a tranquillity. The root tone is the key tone of the scale (C), other tones are the third and

the fifth of the scale (E and G).

���� ��
Figure 2.13: Tonic chord

2.7.2 Dominant chord

The dominant chord is a thrilling chord which is usually resolved (followed) by the tonic one.

The root tone is the fifth tone of the scale (G), other tones are the last and the second of the

scale (B and D).

12

� �� ��� ��
Figure 2.14: Dominant chord, resolved in a tonic one

A tone of particular interest is the leading tone, the last tone of the scale (H) — according

to the strict harmony theory ([1, p. 38, 47]) it must be unique (not being in more octaves) and

resolved and the right resolution is into the first higher tone of the scale — thus the first tone

of the scale (C).

2.7.3 Subdominant chord

The subdominant chord is somewhere between the tonic and the dominant. It can be viewed

as a preparation for a dominant chord with a medium amount of thrill. The root tone is the

fourth tone of the scale (F), other tones are the sixth and the first of the scale (A and C).

�� ���� �� ���
Figure 2.15: Subdominant chord, followed by a dominant one resolved in a tonic one

2.8 Rhythm

Rhythm is a timing of single tones based on a more or less regular patterns. The fundamental

repeating element of rhythm is a beat. Beats are arranged into regular groups of few called

measures (also bars). The first beat of the measure is usually stressed, called a downbeat.

Tempo is a speed of a song, usually denoted as a count of beats per minute.

4
2� ��� � � �

Figure 2.16: Rhythm: three measures, inside each two beats

13

Chapter 3

One of possible processes of the

creation of music

Taking harmony and its progression as a basis in our process can lead us to a very straightforward

approach. This chapter deals with an algorithmic concept I’ve designed, sections are describing

details of it.

Let’s see a song as an at least two dimensional playground, space of possibilities, where one

dimension stands for time and the second one stands for tones. Some of games played there may

be pleasant to watch, joyful or making patterns and some may be not. If we were told what

moves are the only allowed, the game couldn’t be rich in the end, independently of the quantity

of the allowed moves. Instead, we can list just moves we wouldn’t be happy to see and let the

rest for players which brings freedom and a plenty of unexpected situations, hopefully pleasant.

In the beginning it’s reasonable to think over an expected output. We may want a finished

song or a real-time music stream, possibly never-ending. The first demand is leading to some

calculations with the desired output in a finite time, the second one is more complex — calcu-

lations have to be done faster than playing. For simplicity let’s focus on finished songs — even

so it’s not too far from a streaming idea assuming computing is fast enough.

Another concern is about output characteristics — for instance from theory we know songs

or their parts are based on scales, thus we may want a song to be in a random scale, a certain

scale or to change the scale randomly. According to [1, p. 110] the last demand brings some new

rules, for the simplicity we will work with one scale songs. Songs are also of some tempo and

rhythm, we will keep these constant as well.

The constants can be set randomly but they may be considered as inputs of the algorithm,

allowing an user to demand his favorite style.

The first thing to start a song with is a tonic chord so a listener accustoms to the used scale.

Then chords progress freely, avoiding non-allowed moves, till the ending tonic chord again closes

the song. This is a very general concept so it limits output as little as possible.

Supplying the process with new chords is a job of a random chords generator. It takes a

general random number generator and gives a couple — tones of a chord (which are of some

14

count) and a duration of the chord. The result should be random as possible, but a little

adjustment can be made to accelerate the following procedures — the probability distribution

of a tone can be the normal (Gaussian) distribution, thus focusing more on tones around the

center, not going into extremes too often. Another adjustment could be made by telling the

chords generator about the used scale, thus allowing it to give a scale chord more probably than

an out of scale chord.

So we will ask for random chords until we receive a tonic chord. The truth is we could

generate the chord in a fixed way, as a function of the scale, but this would fix the chord

inversion — making the chord structure fusty. The received tonic chord is to become the song’s

beginning.

Most of following supplied chords will probably sound weird because of their fortuity. Thus

we want to relate them to past chords and analyze how much a possibly succeeding chord fits

with the past. Rating can be split into two phases: rating of harmony relations and rating of

rhythm relations. This split allows us to find a harmonically fitting tones at first and let the

finding of a right duration as an independent next step. The less combinations we have to choose

from, the more fast we will find the right value(s).

Both ratings can be of many models. The used one is making the final rating by composing

(multiplying) elementary ratings, each of them, moreover, being of some defined importance.

Sections 3.1 and 3.2 are describing the elementary rules–ratings.

Once having created a latent harmony of chords — a harmonic principle of a song, “a

thought” — we need to convert it to few lines, each representing different instrument with its

own approach, together creating the final output. This thesis thinks of few lines inspired by real

groups, principles are described in Section 3.3.

3.1 Harmony rules

This section lists elementary harmony rules that can be used for rating a possible succeeding

chord in a relation with past chords. Every rule is independent of others, thus the final harmony

rating must be a compound of them. Examples are based on the C major scale. The rules are

extracted from or inspired by [1], a page is often specified.

• Is a leading tone treated the right way? According to [1, p. 38, 47] we can’t double the

leading tone into more octaves and the leading tone has to be led one semitone up to the

tonic tone.

����� �
(a) Bad, doubled

����� ���
(b) Badly resolved

� �� ��� ��
(c) Good

Figure 3.1: Treating of a leading tone rule

15

• If this is a beginning of the song, is it a tonic triad chord? The tonic triad is important

for introducing the scale and all the examples in [1] begin with the tonic chord.

� � ���
(a) Bad, not

tonic triad

�� ���
(b) Good

Figure 3.2: Beginning with a tonic triad rule

• Isn’t a subdominant chord succeeding a dominant chord? According to [1, p. 44, 48] we

avoid appending a subdominant chord to a dominant one, as it would weaken harmony.

���� � ���
(a) Bad

� � ���
(b) Anything

else, good

Figure 3.3: Subdominant not succeeding a dominant rule

• Is it a scale chord? According to [1, p. 48–50, 110] scale chords are the most important

ones and fully sufficient for not long compositions.

� �� ����
(a) Bad

� � ���
(b) Good

Figure 3.4: Scale chord rule

16

• Is it a “thick” chord? This rule acts against too loose chords (having too big range or

being too far from the center of the scale).

�� ���
(a) Bad

�� �� �
(b) Good

Figure 3.5: Thick chord rule

• Isn’t there a too much “jumping”? According to [1, p. 39] it seems that melody shouldn’t

consist of big distances between tones, we apply this rule for all the voices as being melodies.

����� � �
�

(a) Bad

��� �� ���
(b) Good

Figure 3.6: Antijumping rule

• Is it a triad? According to [1, p. 49–50] it is quite efficient and sufficient for harmony to

consist of triads.

��� ��
(a) Bad

�� ���
(b) Good

Figure 3.7: Triad rule

• Isn’t it silence? (In this thesis we avoid silence.)

� ��
(a) Bad

�� ���
(b) Good

Figure 3.8: Antisilence rule

• Is the count of chord tones right? We try to hold four voices harmony.

17

�� ��
(a) Bad, just

two voices

���� ��
(b) Good

Figure 3.9: Tones count rule

• Is a counterpoint move applied? According to [1, p. 42, 44] it is efficient to use counterpoint

move in bass and soprano.

��� �� ��
(a) Bad

� ��� � �
(b) Good

Figure 3.10: Counterpoint rule

• Is it moving? We try to avoid voices to be stuck.

� � ��� ���
(a) Bad

��� �� ���
(b) Bad, soprano

stuck

�� ��� ���
(c) Not good, bass

stuck

��� ���� �
(d) Good

Figure 3.11: Moving rule

• Is it consonant? We allow dissonant chords to interlace consonant ones, vividing the

composition.

� ��� ���� � ���
(a) Bad, two dissonant

chords inline

� �� ��� �� � ��
(b) Good

Figure 3.12: Consonant rule

18

• Isn’t it repeating? We try to avoid repetition of recent chords for vividness.

���� �� ���
��

(a) Bad, the last chord

is the same as the first

one

��� � �� �� �� � ��
(b) Good

Figure 3.13: Antirepeating rule

• Isn’t soprano repeating? We try to make soprano voice more vivid by not repeating recent

soprano tones.

��� � �� �� �� � ��
(a) Bad

� ��� � ��� �� � �
(b) Good

Figure 3.14: Antirepeating soprano rule

3.2 Rhythm rules (of harmony)

Since rhythm is not the main concern of this thesis, just a few simple rhythmic rules were dealt

with to make songs more vivid.

• Isn’t it overlapping the end of a measure? According to [1, p. 50] it’s not so efficient to

end the measure with the same chord that begins the following one. Avoiding overlapping

also makes harmony more dense, which is quite wanted as this thesis takes harmony as

the basis.

� � ��� ���
(a) Bad

�����
(b) Good

Figure 3.15: Antioverlapping rule

• Is it ending on a beat, or least copying rhythm from the last measure? We try to tighten

the feeling of measure beats by making chords end on beats but also a repetition of the

last irregularity is allowed not to have a still robotic rhythm.

19

� ���
4
2 ���

(a) Not so good

���
4
2�

(b) Good,

ending on a beat

�
4
2 ���� ��� ���

� ���� �
(c) Good, copying rhythm

Figure 3.16: Beat-copying rule

3.3 Interpretation

This thesis deals with these interpretation lines: a bass line, a melody line and a rhythmic line.

The bass line is fundamentally a line made of the lowest tones of harmony flow — the bass

voice. But not in a strict way: the fundamental tones have to sound on a stressed beat, otherwise

we can use other tones of the chord (called the fingered way) or we can use tones between the

fundamental ones (called the walking bass)1.

� ��� ��� ����
(a) Harmony flow

�� ����� � � �
(b) Fingered bass

�� �� �� ��� �
(c) Walking bass

Figure 3.17: Interpretation of bass

The melody line is fundamentally a line made of the highest tones of harmony flow — the

soprano voice. Again, it doesn’t have to be in a strict way. An analogue of the walking bass was

experimented with, but results weren’t too pleasing, so just soprano is used — this is something

to be extended. Another melody line is a random melody line made of single random tones of

harmony flow, it’s led the strict way as well.

� ��� ��� ����
(a) Harmony flow

��� ��
(b) Soprano melody

�� �� �
(c) Random melody

Figure 3.18: Interpretation of melody

The rhythmic line which is to boost the feeling of a rhythm of a song is made of chords of

harmony flow arranged to meet song’s rhythm (but allowed being faster). Chords can be split

when repeated, for example the lowest tone the first time of the repeating, then the rest tones,

or by a principle of the broken chord 1–5–102 where the first and the third tone of a chord is

1Inspired by [2].
2Inspired by [2].

20

alternating with the second tone shifted up by an octave. Also percussions could be used to

boost the rhythm, but this is not treated in this thesis.

� ��� ��� ����
(a) Harmony flow

�� ��� � �� � ���� ��
(b) Rhythm chords

�� �
���� � ��

� ���
(c) Broken chords 1–5–10

Figure 3.19: Interpretation of rhythm part

Also the very harmonic flow can be a line in the interpretation, just for the case of making

the total sound more dense or to boost the harmony feeling.

21

Chapter 4

Implementation

This chapter is a bridge between the described algorithm and the implementation itself — named

MusGen — done in the language Haskell1. Mathematically straightforward and self-describing

that Haskell source lines are, they can also be supplemented by a text in a natural language for

an easier insight.

4.1 Input

The generator program takes as input these parameters which the generated song should fulfill:

• Key of harmony, given as tone’s MIDI number.

• Scale’s intervals of harmony. There are two options: major and minor2.

• Beats per measure, given as an integer.

• Tempo of the song, given as a count of quarter notes per minute.

• Minimal duration of the song, given as a minimal count of measures.

• Interpretation style of the song. Possible options are: church, pop and rock.

User can also specify the song’s name and make the program generate a new flow, otherwise

an old one will be used if exists. Given a parameter -? the program prints help, as captured in

Appendix A.

4.2 Output

The program execution can be seen as having two phases where each produces output. The first

one’s product is a file reflecting generated harmony flow. Its name is the song’s name appended

1For the reason for choosing Haskell see http://i.imgur.com/hF6mS.jpg.
2Meant the natural minor.

22

http://i.imgur.com/hF6mS.jpg

by the suffix .flow. An example of the file containing harmony flow of a short song is depicted

in Figure 4.1. The second phase’s product is a MIDI file containing a particular interpretation

of harmony flow. The first file can be reused in next run of program, resulting in a MIDI output

with other interpretation.

There is also a script named midi2pdf.sh which given the generated song’s filename produces

a PDF file containing sheet music based on the input file, as depicted in Figure 4.2.

Chord { tones = [6 6 , 6 9 , 7 4 , 7 8] , key = 62 , i n t e r v a l s = [0 , 2 , 4 , 5 , 7 , 9 , 1 1] ,

begin = 0 , dur = 2 , measure = 12 , beats = 3}
Chord { tones = [6 7 , 7 1 , 7 4] , key = 62 , i n t e r v a l s = [0 , 2 , 4 , 5 , 7 , 9 , 1 1] ,

begin = 2 , dur = 2 , measure = 12 , beats = 3}
Chord { tones = [6 7 , 7 1 , 7 6] , key = 62 , i n t e r v a l s = [0 , 2 , 4 , 5 , 7 , 9 , 1 1] ,

begin = 4 , dur = 6 , measure = 12 , beats = 3}
Chord { tones = [6 6 , 7 1 , 7 4 , 7 8] , key = 62 , i n t e r v a l s = [0 , 2 , 4 , 5 , 7 , 9 , 1 1] ,

begin = 10 , dur = 2 , measure = 12 , beats = 3}
Chord { tones = [6 6 , 6 9 , 7 3] , key = 62 , i n t e r v a l s = [0 , 2 , 4 , 5 , 7 , 9 , 1 1] ,

begin = 0 , dur = 4 , measure = 12 , beats = 3}
Chord { tones = [6 2 , 6 7 , 7 1 , 7 4] , key = 62 , i n t e r v a l s = [0 , 2 , 4 , 5 , 7 , 9 , 1 1] ,

begin = 4 , dur = 2 , measure = 12 , beats = 3}
Chord { tones = [6 4 , 6 7 , 7 1] , key = 62 , i n t e r v a l s = [0 , 2 , 4 , 5 , 7 , 9 , 1 1] ,

begin = 6 , dur = 6 , measure = 12 , beats = 3}
Chord { tones = [6 2 , 6 6 , 7 1 , 7 4] , key = 62 , i n t e r v a l s = [0 , 2 , 4 , 5 , 7 , 9 , 1 1] ,

begin = 0 , dur = 8 , measure = 12 , beats = 3}
Chord { tones = [6 2 , 6 6 , 6 9] , key = 62 , i n t e r v a l s = [0 , 2 , 4 , 5 , 7 , 9 , 1 1] ,

begin = 8 , dur = 4 , measure = 12 , beats = 3}
Chord { tones = [5 9 , 6 4 , 6 7 , 7 1] , key = 62 , i n t e r v a l s = [0 , 2 , 4 , 5 , 7 , 9 , 1 1] ,

begin = 0 , dur = 2 , measure = 12 , beats = 3}
Chord { tones = [5 9 , 6 2 , 6 6] , key = 62 , i n t e r v a l s = [0 , 2 , 4 , 5 , 7 , 9 , 1 1] ,

begin = 2 , dur = 4 , measure = 12 , beats = 3}
Chord { tones = [5 7 , 6 2 , 6 6 , 6 9] , key = 62 , i n t e r v a l s = [0 , 2 , 4 , 5 , 7 , 9 , 1 1] ,

begin = 6 , dur = 6 , measure = 12 , beats = 3}

Figure 4.1: Example of saved harmony flow

23

�

�

�

��

�

�
���� ���

�
�
�
�
�

�
���

�
�

4
3

� ��
4
3

� ��
4
3

���
4
3

���
4
3

���

��
�

���

�

��

�
�
�

� �
����

�
��

�

�
�

�

� �
�

�
�

� �

���
�

�

�

�
���
�

�

��
�

�
���
�

�
�

����
�

�

�

� �

� = 130

�

���
�

�

��

���

�
�

�

��
�
�

�

�

�

�
�

�

��

�

�

�

����
�

��
�

�
�
�

�
��
�

�

�
��

����
�

Figure 4.2: Example of generated song in sheet music

4.3 Environment

The generator program is written in Haskell using two extra packages for processing MIDI

data and command line arguments, named HCodecs3 and CmdArgs4. The program can be

run with GHC5, the packages can be installed with Cabal6.

The process of building source codes into a runnable binary can be initiated by calling

program make7 with no arguments.

Script midi2pdf.sh is written in BASH8 and uses LilyPond9.

See Appendix A for an exemplary use of the program.

Diagrams used in this thesis are made using SourceGraph10, which uses Graphviz11, and

svg2pdf12.

3http://hackage.haskell.org/package/HCodecs
4http://hackage.haskell.org/package/cmdargs
5http://www.haskell.org/ghc/
6http://www.haskell.org/cabal/
7http://www.gnu.org/software/make/
8http://www.gnu.org/software/bash/
9http://lilypond.org/

10http://hackage.haskell.org/package/SourceGraph
11http://www.graphviz.org/
12http://wiki.inkscape.org/wiki/index.php/Tools#svg2pdf

24

http://hackage.haskell.org/package/HCodecs
http://hackage.haskell.org/package/cmdargs
http://www.haskell.org/ghc/
http://www.haskell.org/cabal/
http://www.gnu.org/software/make/
http://www.gnu.org/software/bash/
http://lilypond.org/
http://hackage.haskell.org/package/SourceGraph
http://www.graphviz.org/
http://wiki.inkscape.org/wiki/index.php/Tools#svg2pdf

4.4 Main program and helpers

The executive core of the program is contained in the file Main.hs. See Figure 4.3 for functions

references and Figure 4.4 for module imports. Root elements of the file are:

Input which is a data type determining command line arguments which specify requirements

on an output song.

use which is data based on Input giving more information for arguments processing, including

help descriptions.

checkArg which is a monad which given a (non evaluated) value and its name as a string tries

to evaluate it and in case of error exits the program printing an explanatory information,

meant for checking right types of the arguments.

main which is a monad executing this sequence:

1. Processing command line arguments. In case of demand of help or the program’s

version, the demanded is printed and the program exits.

2. Generating a new random generator.

3. Checking processed arguments for being of right types.

4. In case a harmony flow file doesn’t exist or generating of a new one is demanded, a

new harmony flow is generated and saved into the file. Otherwise it’s loaded from

the file.

5. A MIDI file with an interpreted harmony flow is generated.

4.4.1 Types

Haskell comes with a set of basic types which aren’t of much difference to types of other typed

programming languages, see [3]. New types can be defined from existing ones or compounded,

which is used in the program for the sake of better readability. New types and some functions

of them are defined in the file Types.hs like this:

Tone is a type meant as a MIDI13 tone, defined as an integer.

Interval is a type meant as an interval between two tones, defined as an integer.

Intervals is a type meant as a list of intervals — mainly for representing scale intervals and

chord intervals, allowing the program to work with any scale or any chord user would

define.

Volume is a type meant as a MIDI volume, defined as an integer.

13More about MIDI at 4.7.

25

Flow
loadFlow

Interpretation
interpretations

Main
Data: Input

Main
checkArg

Main
main

Main
use

Midi
exportMidi

Relations
major

Relations
minor

MGRandom
rndSplitL

Midi
makeTracks

Flow
produceFlow

Midi
midiFile

Var
versionDate

Figure 4.3: Functions references for the file Main.hs.

Duration is a type meant as a duration of a tone or a chord, defined as an integer.

Chord is a data type meant as a chord description, compounded of the following data parts:

tones of the chord,

key of the scale to which the chord relates,

intervals of the scale to which the chord relates,

begin which is a duration since the beginning of the measure,

dur which is a duration of the chord,

measure which is a duration of the whole measure and

beats meant as a count of beats per measure.

Thus, all the chords contain the information about the used scale although this thesis

works with a constant scale in the song, but it’s a framework allowing to easily extend the

concept with switching scales.

26

ChanceHarmony

Relations

Types

ChanceHarmonyRhythm

Flow

MGRandom

Interpretation

InterpretationTechniques

Main

Midi

Var

Figure 4.4: Module imports.

For a better understanding of the Chord type, Figure 4.5 is introduced. Its chords are of

these values:

1. tones = “C, E, G” (acutally 60, 64 and 67 in MIDI), key = “C” (actually 60 in MIDI),

intervals = “major scale“ (actually 0, 2, 4, 5, 7, 9, 11 in semitone distances), begin

= 0, dur = 2, measure = 8, beats = 2 (meaning the upper number in the figure)

2. differing values: tones = “E, G, B”, begin = 2, dur = 4

3. differing values: tones = “C, F, A”, begin = 6, dur = 2

This means a beat is of the duration of measure divided by beats. The smallest value is 1

so depending on the two values we determine the fastest sound we can produce.

��� �� ����� �
4
2

�

Figure 4.5: Chord type help illustration

remain is a function of a chord, defining a duration which the chord is missing to complete the

measure.

showBrief is a function of a chord, defining a string which captures the chord’s information in

a brief printable format.

27

Flow is a type meant as a list of chords.

ChanceType is a type meant as a function mapping a chord and a flow into a float.

MidiEvent is a type meant as a MIDI event, defined as a pair of MIDI ticks and a MIDI

message.

MidiTrack is a type meant as a MIDI track, defined as a list of MIDI events.

TracksDefs is a type meant as a list of definitions of how to create and set MIDI tracks.

RndGen is a type meant as a reference to the used random generator14, StdGen is used.

floatMin is a function defining the minimal suitable float value used in chance functions15, the

value 0.1 is used.

floatZero is a function defining the “zero” float value used in chance functions, the value 0.001

is used.

floatHalf is a function defining the “half” float value used in chance functions, the value 0.5 +

floatMin is used.

4.4.2 Random generator

For the sake of randomization we’ll utilize a set of frequently used randomization functions which

are the content of the file MGRandom.hs. They use Haskell package System.Random16 and

its class StdGen, taking its random numbers as input for generating values more desirable like

a duration or a chord’s tones.

When working with random numbers in Haskell, there can be chosen one of two main ways:

• Getting random numbers from monads, but that leads to forcing functions using those

numbers and all functions above17 to be monads too, which deforms a functional approach

a bit.

• Getting random numbers from functions whose one argument must be a random generator.

This approach, used in the program, is pure functional but every used random generator

needs to be unique, otherwise functions will return always the same results because of the

definition of a function as unambiguous. But this is no problem — functions above can

split their input random generators and then pass new and unique ones.

For more information about randomness in Haskell see [4].

14More about random values generating at 4.4.2.
15See Subsections 4.5.2 and 4.5.3.
16http://hackage.haskell.org/packages/archive/random/1.0.0.2/doc/html/System-Random.html
17In a definition chain.

28

http://hackage.haskell.org/packages/archive/random/1.0.0.2/doc/html/System-Random.html

rndDuration is a function of a random generator, defining a duration randomly picked from

even numbers from 2 to 16.

rndTonesCount is a function of a random generator, defining an integer meant as a count of

tones. For simplifying things, the result is always 4.

rndIntervals is a function of a random generator, defining an infinite list of (musical) intervals

where each is a product of a random sign and an unsigned interval which is picked like this:

Probability Interval

25% 0

15% 4

15% 3

10% 2

10% 5

10% 6

5% 1

5% 7

5% randomly picked from 0 to 12

rndNormal is a function of an integer meaning an minimum, an integer meaning an maximum

and a random generator, defining an integer randomly picked from the normal distribu-

tion18 of the range.

rndTones is a function of a random generator, defining an infinite list of random tones gener-

ated with the use of rndNormal for the possible MIDI tones from 0 to 127.

rndChordTones is a function of a random generator, defining a sorted list of tones meant

as a chord. It is using rndTonesCount and rndIntervals. The tones are trying to reach

the number of rndTonesCount and are made sequentially by adding the corresponding

value of rndIntervals to the preceding tone, starting with the MIDI center value 64 plus

the first interval. This process is meant to ensure chords are balanced to the center, not

exaggerating.

rndSplitL is a function of a random generator, defining an infinite list of random generators

made by splitting the input one.

testRndNormal is a testing monad which generates 10000 tones using rndTones and prints

counts of occurrences of possible tone values to verify normality of the used randomization.

See Figure 4.6 for functions references.

18Precisely said not the normal distribution, but a slightly modified similar one — the Irwin–Hall distribution

which is easy to implement: wanting a random number from 0 to max, we sum max random values from the

interval < 0, 1 >, see [5].

29

MGRandom
rndChordTones1

MGRandom
rndTones

MGRandom
rndTonesCount

MGRandom
rndNormal

MGRandom
testRndNormal

MGRandom
rndChordTones

MGRandom
rndChordTones2

MGRandom
rndIntervals

MGRandom
rndDuration

MGRandom
rndSplitL

Figure 4.6: Functions references for the file MGRandom.hs.

30

4.5 Harmony flow

A product of the first stage is a harmony flow. Its creation and file handling is taken care of by

monads and functions from the file Flow.hs:

loadFlow is a monad which given a filename reads a content of the file and returns a harmony

flow contained in the content.

produceFlow is a monad which given a chord meant as a determination of flow’s scale, an

integer meant as flow’s minimal required measure count and a filename produces a new

harmony flow based on the input parameters using a new random generator. The flow is

briefly printed, saved in the file and also returned.

nextFlow is a function of a past harmony flow, an integer meaning a measures count, an integer

meaning a minimal required measures count and a random generator, defining a harmony

flow which is a sequel of the input flow.

nextTonesChord is a function of a past harmony flow and a random generator, defining a

chord harmonically following the input flow, having a zero duration. Until a suitable chord

is found, new ones are created invoking rndChordTones and rated by harmonyChance —

the quality of the suitable chord must beat a minimal required quality which is a random

float between 0.5 and 0.7.

nextDurChord is a function of a chord, a past harmony flow and a random generator, defining

a chord harmonically equivalent with the input chord, having a duration suitable for a

sequel of the input flow. Until a suitable duration is found, new ones are created invoking

rndDuration and rated by harmonyRhythmChance — the quality of the suitable duration

must beat a minimal required quality which is 0.5.

canBeEnd is a function of a chord and a past harmony flow, defining a boolean value whether

the chord can end the flow. Harmonic rule checking function isTonicTriadIn is used to

determine the possibility of ending, the chord also can’t be shorter in duration than half

the measure duration.

realPast is a helper function of a harmony flow, defining a harmony flow which is equivalent

to the input flow if it’s a regular flow, otherwise to an empty flow (that’s in the case the

input flow starts with an empty chord, meaning it’s a helper flow determining the flow’s

scale and beat).

See Figure 4.7 for functions references.

4.5.1 Relations

Functions evaluating musical relations are located in the file Relations.hs.

31

ChanceHarmonyRhythm
harmonyRhythmChance

Flow
nextDurChord

MGRandom
rndDuration

Flow
realPast

MGRandom
rndSplitL

ChanceHarmony
harmonyChance

Flow
nextTonesChord

MGRandom
rndChordTones

Flow
canBeEnd

Relations
isTonicTriadIn

Flow
nextFlow

Flow
loadFlow

Flow
produceFlow

Figure 4.7: Functions references for the file Flow.hs.

scaleSize is a function defining the size of octave in semitones, the value is 12.

major is a function defining intervals of major scale in a relation to key tone.

minor is a function defining intervals of minor scale in a relation to key tone.

chordIntervals is a function defining a list of intervals that a chord can be made of. They are

the following:

majorTriad which is a list of intervals making a major triad,

minorTriad which is a list of intervals making a minor triad,

diminishedTriad which is a list of intervals making a diminished triad and

augmentedTriad which is a list of intervals making a augmented triad.

toneJumpFrom is a function of a list of tones and a tone, defining a minimal interval between

the tone and the tones from the list.

intervalFromTo is a function of two tones, defining an interval between them in a range from

0 to scaleSize− 1, ignoring octaves.

intervalAt is a function of intervals and an integer, defining an interval at the position of the

integer from the intervals, cycling in values.

32

succToneIn is a function of a tone meant as a scale’s key, the scale’s intervals and a tone,

defining a tone succeeding the input tone in the scale.

predToneIn is a function of a tone meant as a scale’s key, the scale’s intervals and a tone,

defining a tone preceding the input tone in the scale.

isFromScale is a function of a tone meant as a scale’s key, the scale’s intervals and a tone,

defining a truth value whether the tone comes from the scale.

areFromScale is a function of a tone meant as a scale’s key, the scale’s intervals and a list of

tones, defining a truth value whether the tones come from the scale.

fitsIntervalsFrom is a function of intervals, a tone meant as a chord’s root and a list of the

chord’s tones, defining a truth value whether the chord is of the intervals.

fitsIntervals is a function of intervals and a list of a chord’s tones, defining a truth value

whether the chord is of the intervals, by checking all the possible chord’s roots.

hasRoot is a function of a tone meant as a chord’s root and a list of the chord’s tones, defining

a truth value whether the chord is of some intervals defined by the function chordIntervals.

isTriad is a function of a list of a chord’s tones, defining a truth value whether the chord is a

triad.

isFullTriad is a function of a list of a chord’s tones, defining a truth value whether the chord

is a triad with no tones omitted.

isTonicTriadIn is a function of a tone meant as a scale’s key, the scale’s intervals and a list of

a chord’s tones, defining a truth value whether the chord is a tonic triad within the scale.

isSubdominantIn is a function of a tone meant as a scale’s key, the scale’s intervals and a list

of a chord’s tones, defining a truth value whether the chord is a subdominant within the

scale.

isDominantIn is a function of a tone meant as a scale’s key, the scale’s intervals and a list of

a chord’s tones, defining a truth value whether the chord is a dominant within the scale.

isLeadingToneIn is a function of a tone meant as a scale’s key, the scale’s intervals and a tone,

defining a truth value whether the tone is the leading-tone of the scale.

isLeadingToneOkIn is a function of a tone meant as a scale’s key, the scale’s intervals, a list

of the first chord’s tones and a list of the second chord’s tones, defining a truth value

whether, within the scale, the first chord’s possible leading-tone is resolved or continued

correctly into the second chord, plus there is no more than one leading-tone at a time.

isCounterpoint is a function of a list of the first chord’s tones and a list of the second chord’s

tones, defining a truth value whether the chords progress in counterpoint.

33

isSopranoMoving is a function of a list of the first chord’s tones and a list of the second

chord’s tones, defining a truth value whether the soprano part of the chords moves.

isBassMoving is a function of a list of the first chord’s tones and a list of the second chord’s

tones, defining a truth value whether the bass part of the chords moves.

percentageMoving is a function of a list of the first chord’s tones and a list of the second

chord’s tones, defining a float meant as a percentage of the second chord’s tones not being

part of the first one.

isConsonantIn is a function of a tone meant as a scale’s key, the scale’s intervals and a list of

tones, defining a truth value whether the tones are consonant within the scale.

See Figure 4.8 for functions references.

4.5.2 Chances for harmony

Deciding whether a chord can be an appropriate successor to past chords harmonically is is done

using functions from the file ChanceHarmony.hs.

harmonyChance is a function of a possible successor chord and past chords ordered backwards,

defining a float value — reflecting how the chord fits the past harmonically — as a product

of elementary deciding functions, each powered by its significance, as defined by the list

chances, each function having the same type signature with the expected range of the

float being from 0 meaning not fulfilling at all to 1 meaning totally fulfilling:

chanceThick defines whether the chord is thick — as not of a big distance between bass and

soprano — and not too far from the key.

chanceJumps defines whether there’s not too much “jumping” from the last past chord —

meant as too big moves in voices.

chanceInScale defines whether the chord comes from the scale.

chanceTriad defines whether the chord is of a triad nature.

chanceTonicStart defines whether the chord is a tonic triad and thus can begin a song.

chanceNotDomThenSub defines whether the last past chord isn’t dominant and at the same

time the actual chord isn’t subdominant, which would be an illegal move.

chanceLeadingTone defines whether the rule of leading tone isn’t broken.

chanceNotEmpty defines whether the chord isn’t empty (just a pause).

chance4Tones defines whether the chord has 4 unique tones (octaves differ).

34

Relations
augmentedTriad

Relations
intervalAt

Relations
intervalFromTo

Relations
scaleSize

Relations
isFromScale

Relations
isFullTriad

Relations
isTriad

Relations
isLeadingToneIn

Relations
isLeadingToneOkIn

Relations
majorTriad

Relations
diminishedTriad

Relations
minorTriad

Relations
fitsIntervals

Relations
predToneIn

Relations
succToneIn

Relations
hasRoot

Relations
chordIntervals

Relations
fitsIntervalsFrom

Relations
isDominantIn

Relations
isSubdominantIn

Relations
isTonicTriadIn

Relations
areFromScale

Relations
isConsonantIn

Relations
isBassMoving

Relations
isCounterpoint

Relations
isSopranoMoving

Relations
major

Relations
minor

Relations
percentageMoving

Relations
toneJumpFrom

Figure 4.8: Functions references for the file Relations.hs.

chanceCounterpoint defines whether bass and soprano are moving in a counterpoint manner.

chanceMove defines how much voices are moving, the most important are moves in bass and

soprano.

chanceConsonance defines whether the progress is of a consonant nature by beginning a flow

with a consonant chord and not ensuing a dissonant one by another dissonant.

chanceAntiRepetition defines whether the chord isn’t a repetition of one of the last three

chords.

chanceAntiRepetitionForSoprano defines whether the soprano doesn’t repeat one of the

last three tones.

See Figure 4.9 for functions references.

35

ChanceHarmony
chanceAntiRepetition

ChanceHarmony
chanceAntiRepetitionForSoprano

Relations
isSopranoMoving

ChanceHarmony
chanceNotEmpty

ChanceHarmony
chanceThick

ChanceHarmony
chanceTriad

Relations
isFullTriad

ChanceHarmony
chances

ChanceHarmony
chanceMove

ChanceHarmony
chanceConsonance

ChanceHarmony
chanceInScale

ChanceHarmony
chanceNotDomThenSub

ChanceHarmony
chanceCounterpoint

ChanceHarmony
chanceTonicStart

ChanceHarmony
chanceLeadingTone

ChanceHarmony
chanceJumps

ChanceHarmony
harmonyChance

Relations
isBassMoving

Relations
percentageMoving

Relations
isConsonantIn

Relations
areFromScale

Relations
isDominantIn

Relations
isSubdominantIn

Relations
isCounterpoint

Relations
isTonicTriadIn

Relations
isLeadingToneOkIn

Relations
toneJumpFrom

ChanceHarmony
chance4Tones

Figure 4.9: Functions references for the file ChanceHarmony.hs.

36

ChanceHarmonyRhythm
chanceMeasureTime

ChanceHarmonyRhythm
chances

ChanceHarmonyRhythm
chanceBeatTime

ChanceHarmonyRhythm
harmonyRhythmChance

ChanceHarmonyRhythm
chanceCopyRhythm

Figure 4.10: Functions references for the file ChanceHarmonyRhythm.hs.

4.5.3 Chances for rhythm

Deciding whether a chord can be an appropriate successor to past chords rhythmically is is done

using functions from the file ChanceHarmonyRhythm.hs.

harmonyRhythmChance is a function of a possible successor chord and past chords ordered

backwards, defining a float value — reflecting how the chord fits the past rhythmically —

as a product of elementary deciding functions, each powered by its significance, as defined

by the list chances, each function having the same type signature with the expected range

of the float being from 0 meaning not fulfilling at all to 1 meaning totally fulfilling:

chanceMeasureTime defines whether the chord ends before or just at ending of measure,

meant to prevent overlapping measures.

chanceBeatTime defines whether the chord ends at beat or copies a rhythmical pattern used

in the last measure, which is defined by the function chanceCopyRhythm.

See Figure 4.10 for functions references.

37

4.6 Interpretation

The core of the second phase of the program — interpretation — is located in the file Inter-

pretation.hs.

The list interpretations is a list of all possible interpretation styles, including:

churchTracks interpreting flow by 5 instruments (organ, piano, acoustic bass, acoustic steel

guitar and harpsichord) in a church music resembling style,

popTracks interpreting flow by 5 instruments (synthetic strings, square lead, synthetic bass,

acoustic steel guitar and sawtooth lead) in a pop music resembling style and

rockTracks interpreting flow by 5 instruments (distorted guitar, overdriven guitar twice, elec-

tric bass and harpsichord) in a rock music resembling style.

Following functions are functions of a harmony flow and a random generator, defining a

harmony flow interpreting the input flow in a particular way:

harmonyTrack defines the same flow, copying the harmony.

sopranoTrack defines a soprano melody flow.

harmonyRhythmTrack defines a rhythmical chords flow.

harmonyRhythmTrackRock defines a rhythmical chords flow, transposed one octave down.

additionTrack defines a random melody flow.

bassTrack defines a bass melody flow, randomly switching fingered bass or walking bass styles.

See Figure 4.11 for functions references.

4.6.1 Techniques used in interpretation

The interpretation techniques are implemented by functions contained in the file Interpreta-

tionTechniques.hs.

There’s an auxiliary function named octaveShift which is a function of an integer and a

musical flow, defining a flow made of the input flow transposed by the integer count of octaves.

Other functions are standardized to the form of a function of an random generator and a

musical flow, defining a musical flow. Sometimes the random generator can be unused if not

needed. These are the functions and how they define the output flow:

sopranoFlow defines the flow made of the soprano part19 of the input flow.

randomMelodyFlow defines the flow made of the input flow where just one tone is randomly

picked from each chord.

19The highest tones.

38

Interpretation
additionTrack

InterpretationTechniques
randomMelodyFlow

Interpretation
bassTrack

InterpretationTechniques
walkingBass

InterpretationTechniques
octaveShift

InterpretationTechniques
fingeredFlow

MGRandom
rndSplitL

Interpretation
churchTracks

Interpretation
harmonyTrack

Interpretation
sopranoTrack

Interpretation
harmonyRhythmTrack

Interpretation
interpretations

Interpretation
popTracks

Interpretation
rockTracks

Interpretation
harmonyRhythmTrackRock

InterpretationTechniques
sopranoFlow

InterpretationTechniques
chordRhythmFlow

InterpretationTechniques
brokenChord1_5_10

Figure 4.11: Functions references for the file Interpretation.hs.

fingeredFlow defines the flow made of the input flow where each chord is arranged to a se-

quence of its tones in the form: the first, the third, the second, the third, the second, . . . ,

the sequence meeting the beat of the flow.

chordRhythmFlow defines the flow made of the input flow where each chord is repeated to

meet the beat of the flow.

brokenChord1 5 10 defines the flow made of the input flow where each chord is repeated in

alternating forms, the first form being the first and the third tone of the chord, the second

form being the second tone transposed up by an octave; the repetition meeting the beat

of the flow.

39

InterpretationTechniques
brokenChord1_5_10

Relations
scaleSize

InterpretationTechniques
octaveShift

Relations
predToneIn

InterpretationTechniques
walkingBass

Relations
succToneIn

InterpretationTechniques
chordRhythmFlow

InterpretationTechniques
fingeredFlow

InterpretationTechniques
randomMelodyFlow

InterpretationTechniques
sopranoFlow

Figure 4.12: Functions references for the file InterpretationTechniques.hs.

walkingBass defines the flow made of the input flow where each chord is arranged to a sequence

of tones with the first tone being the first tone of the chord, others going up and down in

the scale of the flow to approach the first tone of the succeeding chord or the first tone of

the actual chord if it’s the last one; the sequence meeting the beat of the flow but twice

the speed.

See Figure 4.12 for functions references.

40

4.7 MIDI

According to [6], MIDI, standing for Musical Instrument Digital Interface, is a protocol of

communication enabling different electronic musical instruments and computers to interchange

digital messages about music being played. Moreover, there’s a MIDI file format which allows

us to save these data. Having the well-defined file format we can operate with it in many ways,

we’ll use it as a final stage of our generated songs. Then we’ll be able to play it, make sheet

music of it and there’s also a possibility of generated songs being just the first step in a chain

of creation of music.

We’ll use a MIDI file format which is composed of MIDI tracks where each represents a

specific interpretation of harmony flow for a specific instrument. A track is a list of MIDI events

where each is defined by a delay since the preceding event and a MIDI message.

4.7.1 MIDI messages

Let’s have a look at some basic MIDI messages — as defined in the Haskell package HCodecs,

see [7] — the generator program uses:

NoteOn tells what tone on what channel should be played with what volume, zero volume

means muting the tone.

KeySignature tells how many sharps or flats a musical staff has and whether it’s a major

scale.

TimeSignature tells two numbers which are written at the beginning of a musical staff, indi-

cating a time signature.

ChannelPrefix tells what channel is meant by following messages.

InstrumentName tells a name of an instrument, just informational message.

ProgramChange tells what channel has what MIDI instrument.

TempoChange tells a new tempo in an uncommon format of the value of microseconds per

minute divided by beats per minute, see [8].

TrackEnd tells a MIDI track ends, all tracks should end with this message.

4.7.2 Implemented functions and monad in relation to MIDI output

These are the functions and the monad contained in the file Midi.hs:

toneMidi is a function of a tone and a volume, defining a MIDI event that starts playing the

tone with the volume.

41

pauseMidi is a function of a duration, defining a MIDI event that moves the MIDI play forward

by the duration.

flow2Midi is a function of a musical flow, defining a list of MIDI events playing this flow. Note

that each part of flow is in fact an isolated chord, so there’s no way to create pervading

tones in one flow. Another note: volume set for the events is constant, set to the MIDI

maximum 127.

keySignature is a function of a tone and a list of intervals, defining a message part of a MIDI

event that represents a MIDI key signature of a scale made of the tone as the key and the

intervals.

timeSignature is a function of an integer, defining a MIDI event that sets the time signature

with the integer as the upper number, the lower number is 4.

eventsParam is a function of a channel number, a float and a list of MIDI events, defining an

altered list where every tone playing event is set to be played on the given channel with

volume being multiplied by the float.

midiTrack is a function of a channel number, an instrument name, an instrument MIDI num-

ber, a volume, a list of MIDI events, a beginning chord stating the scale of a track, and a

tempo, defining a list of MIDI events fully covering the track made of the input list and

adjusted to the rest of arguments.

makeTracks is a function of a list of definitions of MIDI tracks, a musical flow, a random

generator and a tempo, defining a list of MIDI tracks where each is created by an inter-

pretation of the flow as defined for the track with the use of a new random generator split

from the input one, processed by the function midiTrack to meet the other arguments.

midiFile is a function of a list of MIDI tracks, defining a content of a MIDI file made of the

tracks.

exportMidi is a monad which given a filename and a content of a MIDI file exports the content

into a file with the name.

See Figure 4.13 for functions references.

42

Midi
keySignature

Relations
intervalFromTo

Relations
major

Midi
eventsParam

Midi
midiTrack

Midi
timeSignature

Midi
flow2Midi

Midi
toneMidi

Midi
pauseMidi

Midi
makeTracks

MGRandom
rndSplitL

Midi
exportMidi

Midi
midiFile

Figure 4.13: Functions references for the file Midi.hs.

43

Chapter 5

Comparison with similar software

MusGen is not the only software targeting computer music creation — according to [9] a lot

of similar software exists and a lot of papers has been published. Let’s take a look at some

programs generating music in a relation to MusGen.

5.1 WolframTones

WolframTones1 comes with an algorithm which, according to [10], works this way:

• There’s a 2D matrix.

• Color (just black or white) of every cell in the matrix is defined in a relation to neighbour

cells.

• A strip from the matrix is taken.

• One dimension from the strip is considered as a pitch, the other one as a time.

• Black cells from the strip are instrumentalized based on their position. Multiple instru-

ments are supported, thus a melody or bass line can exist and the piece can be supple-

mented by percussion.

Compared to Musgen, it’s more deterministic — just the rule of coloring is optional and

bringing a space of possibilities — and it doesn’t obey classical music rules, actually it produces

output which is to be musical naturally but maybe not so much in a Western way.

5.2 FractMus

FractMus2 is another program using mathematical formulas to create a song. Described as just

a helping tool in the process of creation of music, it can be seen as an example of the group of

1Homepage http://tones.wolfram.com/.
2Homepage http://www.gustavodiazjerez.com/fractmus_overview.html.

44

http://tones.wolfram.com/
http://www.gustavodiazjerez.com/fractmus_overview.html

programs which not tend to compose the final piece but just help the user use algorithms and

computation in the process.

MusGen can be seen in this way as well — generated songs being in the MIDI format can

be changed, taken as a basis for more elaborated songs.

5.3 C.P.U. Bach

C.P.U. Bach3 has, according to [11], a lot of similarity with MusGen: it uses a so called “weighted

exhaustive search” which seems to obey rules what can or cannot be produced, but it encom-

passes more things like “tendencies” — not so strict rules — and it also tries to create a song

from parts which gives more musical sense. Actually, being more enhanced, MusGen would

probably be very close to this.

5.4 Virtual music composer

Virtual music composer4 is an example of programs which are similar in input and output to

MusGen but there’s no insight into their algorithms because they’re not free software and there’s

no description of their principles released.

Virtual music composer takes few input parameters determining output’s scale and style and

just creates MIDI, like MusGen.

3No homepage, also works only on an uncommon platform called 3DO.
4Homepage http://www.virtualmusiccomposer.com/.

45

http://www.virtualmusiccomposer.com/

Chapter 6

Conclusion

After introducing necessary music theory terms in a brief way, the core of the thesis — the

algorithm — was presented. Its development came from self-experimenting with both practical

(MIDI) and theoretical (harmony theory, mainly taught by the great book [1]) stuff. Its principle

is very easy and lightweight, thus not tending to create a complex masterpieces but mainly

showing the possibility of creating a framework which can give algorithmic music and can be

extended by more, especially harmonic, rules to get closer to classical Western music.

The implementation done in language Haskell proves the functionality of the algorithm and

also describes it including used rules in a mathematical bright way, not seeing Haskell so much

as a programming language but more as a definition language.

The comparison with similar software shows there’s more people wanting to create and

improve programs generating random music which leads to propositions of the next development:

letting extending a count of harmony rules aside, melody and rhythm are two things where only

cornerstones were put and thus can be developed almost any way. Also a too much of randomness

may be more than sufferable making output too much chaotic — if the random seed repeats

sometimes, we could be able to produce more accustomed songs with choruses and verses. Then,

a lot of people would surely appreciate a possibility of engaging a percussion stuff.

Making MusGen was quite a fun and I’m looking forward to extend it and maybe cooperate

with other people interested in music and computers.

46

Bibliography

[1] KOFROŇ, Jaroslav. Učebnice harmonie. 10th edition, 2006. 178 pages. ISBN 80-86385-14-0.

8, 12, 13, 14, 15, 16, 17, 18, 19, 46

[2] KALENDA, Václav. Na klav́ır za několik týdn̊u [online]. [cited 27th April 2011]. <http://

hobby.idnes.cz/skola-hry-na-klavir-0o1-/hobby-domov.asp?o=0&klic=145025>.

20

[3] Types and Typeclasses. Learn You a Haskell for Great Good! [online]. [cited 25th March

2011]. <http://learnyouahaskell.com/types-and-typeclasses>. 25

[4] Randomness. Learn You a Haskell for Great Good! [online]. [cited 24th March 2011].

<http://learnyouahaskell.com/input-and-output#randomness>. 28

[5] Normal distribution — Generating values from normal distribution. Wikipedia, the free en-

cyclopedia [online]. [cited 22nd March 2011]. <http://en.wikipedia.org/wiki/Normal_

distribution#Generating_values_from_normal_distribution>. 29

[6] Musical Instrument Digital Interface. Wikipedia, the free encyclopedia [online]. [cited

18th March 2011]. <http://en.wikipedia.org/wiki/Musical_Instrument_Digital_

Interface>. 41

[7] Codec.Midi. HackageDB [online]. [cited 18th March 2011]. <http://hackage.haskell.

org/packages/archive/HCodecs/0.2/doc/html/Codec-Midi.html>. 41

[8] MIDI File Format. The Sonic Spot [online]. [cited 18th March 2011]. <http://www.

sonicspot.com/guide/midifiles.html>. 41

[9] Algorithmic composition resources. Algorithmic.net [online]. [cited 29th April 2011].

<http://www.flexatone.net/algoNet/>. 44

[10] How WolframTones Works. WolframTones [online]. [cited 29th April 2011]. <http://

tones.wolfram.com/about/how.html>. 44

[11] MEIER, Sidney K. — et al. System for real-time music composition and synthesis.

Google patents [online]. [cited 29th April 2011]. <http://www.google.com/patents?vid=

USPAT5496962>. 45

47

http://hobby.idnes.cz/skola-hry-na-klavir-0o1-/hobby-domov.asp?o=0&klic=145025
http://hobby.idnes.cz/skola-hry-na-klavir-0o1-/hobby-domov.asp?o=0&klic=145025
http://learnyouahaskell.com/types-and-typeclasses
http://learnyouahaskell.com/input-and-output#randomness
http://en.wikipedia.org/wiki/Normal_distribution#Generating_values_from_normal_distribution
http://en.wikipedia.org/wiki/Normal_distribution#Generating_values_from_normal_distribution
http://en.wikipedia.org/wiki/Musical_Instrument_Digital_Interface
http://en.wikipedia.org/wiki/Musical_Instrument_Digital_Interface
http://hackage.haskell.org/packages/archive/HCodecs/0.2/doc/html/Codec-Midi.html
http://hackage.haskell.org/packages/archive/HCodecs/0.2/doc/html/Codec-Midi.html
http://www.sonicspot.com/guide/midifiles.html
http://www.sonicspot.com/guide/midifiles.html
http://www.flexatone.net/algoNet/
http://tones.wolfram.com/about/how.html
http://tones.wolfram.com/about/how.html
http://www.google.com/patents?vid=USPAT5496962
http://www.google.com/patents?vid=USPAT5496962

Appendix A

Exemplary use of the program

1. Installing needed packages:

$ cabal install hcodecs cmdargs

2. Compiling the program:

$ make

mkdir tmp

ghc --make Main -outputdir tmp -o musgen -O2

[1 of 11] Compiling Var (Var.hs, tmp/Var.o)

[2 of 11] Compiling Types (Types.hs, tmp/Types.o)

[3 of 11] Compiling ChanceHarmonyRhythm (ChanceHarmonyRhythm.hs, tmp/ChanceHar

monyRhythm.o)

[4 of 11] Compiling Relations (Relations.hs, tmp/Relations.o)

[5 of 11] Compiling ChanceHarmony (ChanceHarmony.hs, tmp/ChanceHarmony.o)

[6 of 11] Compiling MGRandom (MGRandom.hs, tmp/MGRandom.o)

[7 of 11] Compiling InterpretationTechniques (InterpretationTechniques.hs, tmp

/InterpretationTechniques.o)

[8 of 11] Compiling Midi (Midi.hs, tmp/Midi.o)

[9 of 11] Compiling Interpretation (Interpretation.hs, tmp/Interpretation.o

)

[10 of 11] Compiling Flow (Flow.hs, tmp/Flow.o)

[11 of 11] Compiling Main (Main.hs, tmp/Main.o)

Linking musgen ...

3. Asking for help:

$./musgen -?

MusGen, version date: 2011-03-16

48

musgen [OPTIONS] [SONG_NAME]

Common flags:

-k --key[=MIDI_TONE] Key of harmony

-s --scale[=major|minor] Scale of harmony

-b --beats[=INT] Beats per measure

-t --tempo[=INT] Quarter notes per minute

-m --minmeasures[=INT] Minimal number of measures

-i --interpretation[=STYLE] Style of interpretation

-n --new Generate new flow

-? --help Display help message

-V --version Print version information

Generates a song fulfilling given parameters, song’s name is "song" by default.

Available styles of interpretation are: church, pop, rock.

Output is SONG_NAME.midi with playable MIDI data and SONG_NAME.flow with

reusable information about harmony flow.

4. Generating a song:

$./musgen -k62 -smajor -b3 -t130 -m4 -ipop

([54,57,62,69],b0,d4,r12)

([57,61,64],b4,d6,r8)

([57,61,66],b10,d2,r2)

([55,59,62,67],b0,d2,r12)

([54,57,62,69],b2,d10,r10)

([59,62,66],b0,d2,r12)

([57,61,64,69],b2,d2,r10)

([61,64,67],b4,d2,r8)

([57,62,66,69],b6,d4,r6)

([61,64,67],b10,d2,r2)

([59,62,66,71],b0,d2,r12)

([61,66,69],b2,d2,r10)

([59,62,67,71],b4,d8,r8)

([59,62,67],b0,d10,r12)

([57,61,66,69],b10,d2,r2)

([61,64,67],b0,d10,r12)

([57,61,64,69],b10,d2,r2)

([59,62,66],b0,d12,r12)

([55,61,64,67],b0,d6,r12)

([57,62,66],b6,d6,r6)

49

Flow generated.

MIDI generated.

5. Generating a sheet music:

$./midi2pdf.sh song.midi

50

	1 Preamble
	2 Introduction to music theory
	2.1 Song
	2.2 Tone
	2.3 Melody
	2.4 Chord
	2.4.1 Triad

	2.5 Harmony
	2.5.1 Voices
	2.5.2 Counterpoint

	2.6 Scale
	2.6.1 Consonance and dissonance

	2.7 Diatonic function
	2.7.1 Tonic chord
	2.7.2 Dominant chord
	2.7.3 Subdominant chord

	2.8 Rhythm

	3 One of possible processes of the creation of music
	3.1 Harmony rules
	3.2 Rhythm rules (of harmony)
	3.3 Interpretation

	4 Implementation
	4.1 Input
	4.2 Output
	4.3 Environment
	4.4 Main program and helpers
	4.4.1 Types
	4.4.2 Random generator

	4.5 Harmony flow
	4.5.1 Relations
	4.5.2 Chances for harmony
	4.5.3 Chances for rhythm

	4.6 Interpretation
	4.6.1 Techniques used in interpretation

	4.7 MIDI
	4.7.1 MIDI messages
	4.7.2 Implemented functions and monad in relation to MIDI output

	5 Comparison with similar software
	5.1 WolframTones
	5.2 FractMus
	5.3 C.P.U. Bach
	5.4 Virtual music composer

	6 Conclusion
	Bibliography
	A Exemplary use of the program

